A General Discrete Choquet Integral
نویسندگان
چکیده
We consider a collection F of subsets of a finite set N together with a capacity v : F → R+ and call a function f : N → R measurable if its level sets belong to F . Only in this case, the classical definition of the Choquet integral works in our wider context. In this article, we provide a general framework for a Choquet integral that works also for non-measurable functions f and includes the integral proposed by Lehrer as a special case. We show that the general Choquet integral can be computed by a Monge-type algorithm. Moreover, we derive several properties that relate to the extension of capacities on 2 and to supermodularity, in particular.
منابع مشابه
On the axiomatization of some classes of discrete universal integrals
Following the ideas of the axiomatic characterization of the Choquet integral due to [D. Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc. 97 (1986) 255–261] and of the Sugeno integral given in [J.-L. Marichal, An axiomatic approach of the discrete Sugeno integral as a tool to aggregate interacting criteria in a qualitative framework, IEEE Trans. Fuzzy Syst. 9 (2001...
متن کاملProbit and nested logit models based on fuzzy measure
Inspired by the interactive discrete choice logit models [Aggarwal, 2019], this paper presents the advanced families of discrete choice models, such as nested logit, mixed logit, and probit models to consider the interaction among the attributes. Besides the DM's attitudinal character is also taken into consideration in the computation of choice probabilities. The proposed choice models make us...
متن کاملOn the moments and distribution of discrete Choquet integrals from continuous distributions
We study the moments and the distribution of the discrete Choquet integral when regarded as a real function of a random sample drawn from a continuous distribution. Since the discrete Choquet integral includes weighted arithmetic means, ordered weighted averaging functions, and lattice polynomial functions as particular cases, our results encompass the corresponding results for these aggregatio...
متن کاملProjects performance evaluation model based on Choquet Integral
In most of the multi–criteria decision–analysis (MCDA) problems in which the Choquet integral is used as aggregation function, the coefficients of Choquet integral (capacity) are not known in advance. Actually, they could be calculated by capacity definition methods. In these methods, the preference information of decision maker (DM) is used to constitute a possible solution space. ...
متن کاملGeneralized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making
The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009